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Abstract 
Blue Gene/L is currently the world’s highest performing and most scalable parallel 
system. With a raw compute power varying from 5.7 (single-rack configuration) to 
almost 370 TF (64-rack configuration), it can enable scientific and engineering 
computations that were just not possible before. A system with this much compute power 
can be very demanding on its I/O subsystem, however. Many important applications 
require the processing of vast volumes of data. With up to 1 TB of main memory per rack, 
checkpoint/restart can also require the saving and restoring of a lot of data. This article 
focuses on the issue of supporting high-performance file I/O on the Blue Gene/L system. 

1 Introduction 
Blue Gene/L is an exciting new machine. With its unprecedented amounts of computing 
power and scalability, it enables scientific and engineering computations that have never 
been possible before. The Blue Gene/L system is different from most current parallel 
machines in that the compute nodes run a very lightweight kernel, called the compute 
node kernel (CNK). One feature of the CNK is that it forwards system calls off the 
compute node for service. A separate process, running on the I/O node, services system 
calls on behalf of the CNK. 
 
In this article we discuss how parallel I/O is implemented on the Blue Gene/L machine 
and the available options for parallel file systems. 

2 Background 
A high-level block diagram of a Blue Gene/L system is shown in Figure 1. The 
organization of a Blue Gene/L system is based on the principles of physical partitioning 
and specialization. The compute nodes are specialized to run user application processes. 
The I/O nodes are specialized to perform system functions related to job control and I/O. 
The data servers are specialized to store data files used by the user applications. BG/L 
machines may be configured with as few as one I/O node per 64 compute nodes or as 
many as one I/O node per 8 compute nodes. 
 
The architecture of the data server cluster varies widely between Blue Gene system 
deployments, as we will see in this article. The data servers are typically implemented 
with conventional off-the-shelf servers. In some cases, the data servers have the disks 
internal to them. In other cases, the data servers are connected to disks through a storage-
area network. Depending on the file system operating in the Blue Gene/L I/O nodes, the 
data servers can be file servers (e.g., NFS servers for an NFS file system) or just storage 
servers (e.g., NSD servers for a GPFS file system). 
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Figure 1: High-level block diagram of a Blue Gene/L system. The figure shows the compute and I/O 
nodes of the Blue Gene/L core and also the data servers that are connected to it. 

 
User application processes run only on the compute nodes. Furthermore, the model is to 
have a single thread of execution per processor of the compute node. This can be 
accomplished either with a single process (in coprocessor mode) or with two independent 
processes (in virtual node mode) per compute node. (Note that in coprocessor mode, the 
second processor is used to perform message-passing functions.) 
 
The compute node kernel was designed to implement only the strictly necessary 
functionality for this model of execution, thus minimizing any perturbation of the running 
application processes. In particular, all I/O system calls initiated by user application 
processes running on a compute node (e.g., open, close, read, write) are trapped by 
the CNK, and a request to perform the indicated function is shipped to the corresponding 
I/O node.  
 
The I/O request shipped by CNK is received in the I/O node by a process called the 
Control and I/O Daemon (CIOD). This is a user process that runs with the same user id as 
the owner of the job running on the compute nodes. The CIOD simply reissues the 
request as a system call to the I/O node operating system.  
 
In addition to input/output, the I/O nodes are expected to perform other system functions. 
We have chosen to run Linux as the operating system; hence, the I/O nodes can support 
any file system for which there is an appropriate port to Linux PowerPC 32-bit.  
 



Compute and I/O nodes are interconnected through the collectives network, also known 
as the tree network. This is the same network that supports reduction and broadcast 
operations among the compute nodes. In the case of function shipping, this network is 
used as a point-to-point network between a compute node and its corresponding I/O node.  
 
I/O operations are always initiated by an application process. The CNK will compose a 
message describing the request and send it to the I/O node for execution by CIOD. 
Messages in the collectives network must be decomposed into individual packets of 256 
bytes and then reconstructed at the destination (CIOD for requests, CNK for replies). 
Most typical I/O operations can be implemented as single messages and many of them as 
single packets.  
 
Very large file reads and writes, however, are decomposed into multiple messages, and 
each message is executed in order before proceeding to the next message. For example, a 
5 MB read operation from the application process can be decomposed into 10 smaller 
read operations by the CNK. Each operation is then performed through a message that 
goes to CIOD for execution and then comes back with the resulting data. The CNK will 
complete all individual messages before finishing the read request and returning control 
to the application process. 
 
The maximum size of messages between compute and I/O nodes can be controlled by the 
administrator for a particular installation through system configuration files. The CIOD 
environment variable CIOD_RDWR_BUFFER_SIZE controls the value of the buffer size 
for read and write system calls. The default value is 87600 bytes. “Popular” values that 
have shown good performance in installed systems are 256 KB and 512 KB, although 
some groups use values as large as 2–4 MB The CIOD environment variables are 
summarized in Table 1. 
 
CIOD supports a service connection that provides a trace facility and status reporting.  
The intent is to let a system programmer or administrator check on a running CIOD 
without disturbing it. CIOD starts a secondary thread that monitors the service connection 
so there is minimal impact to the work being done by the main thread. CIOD uses TCP 
port 7201 for the service connection. The trace facility supports turning tracing on and off 
for categories of events. By default, the trace output is sent back across the service 
connection but can also be directed to a file. The trace output allows one to see the flow 
of control through a running CIOD. The status reporting allows one to see the current 
state of various objects maintained by CIOD. One can check on individual compute 
nodes and get overview performance information for certain system calls.   
 
 
 
 
 
 
 
 



Table 1: CIOD environment variables. 

Variable name Description 
CIOD_RDWR_BUFFER_SIZE The value is the buffer size for read and write system 

calls. The value can be increased or decreased to find 
the best match for the network and file servers used by 
the Blue Gene system. CIOD allocates one buffer of 
the specified size for each compute node that it is 
managing. A larger value causes CIOD to allocate 
more memory. The default value is 87600.  

CIOD_TREE_RECV_RETRY  The value is the number of times CIOD tries to receive 
a packet from the tree device before deciding a packet 
is not available and yielding the processor. A value of 
16 causes CIOD to never yield and return 
immediately. A larger value causes CIOD to pay more 
attention to the tree. The default value is 16.  

CIOD_TREE_SEND_RETRY  The value is the number of times CIOD tries to send a 
packet to the tree device before yielding the processor. 
A value of 0 causes CIOD to never yield and loop 
until the packet is sent. A larger value causes CIOD to 
pay more attention to the tree. The default value is 0.  

CIOD_TREE_MULTIPLIER  The value is the default multiplier controlling how 
often CIOD checks for messages from the compute 
nodes before checking the control connections and 
waiting I/O. The tree multiplier is dynamically 
adjusted by CIOD when at least one compute node is 
using a debugger or there is waiting I/O. A larger 
value causes CIOD to pay more attention to messages 
from compute nodes. The default value is 8192. 

DEBUG_SOCKET_STARTUP  The value is a string that controls what blocks have the 
CIOD service connection enabled. The value ALL 
enables the service connection on every block. 
Otherwise, the value is the name of one block where 
the service connection is enabled. When the variable is 
not set, the service connection is not enabled. 

 
As previously noted, the I/O nodes can use any file system that has been ported to their 
version of Linux for PowerPC 32-bit. As part of the boot process, every I/O node mounts 
from a primary NFS server that contains the code for the rest of the boot. Once that 
primary file system is mounted, the I/O nodes can mount other file systems. The rest of 
this article discusses the options for parallel file systems that are available for Blue 
Gene/L. 

3 File Systems 
Currently four file system options are being actively pursued for Blue Gene/L systems: 
NFS, GPFS, PVFS2, and Lustre. 



3.1 NFS 
The first option is to use NFS to mount a file system. This works with almost any file 
system, parallel or not. If a parallel file system is available, it may be NFS-exported from 
a variety of data storage machines, and each I/O node can NFS-mount from a different 
machine. This is a cheap and easy way to deploy a parallel file system for Blue Gene/L. 
Scalability limitations are associated with this configuration, however, since NFS is not 
really aware of the parallel nature of the underlying file system. In experiments with 
NFS-exported GPFS, the performance is quite good when each application process 
accesses a different file. On the other hand, the performance is very bad when multiple 
application processes share the same file. 

3.2 GPFS 
The second option is to use GPFS, the parallel file system developed and supported by 
IBM. The San Diego Supercomputer Center (SDSC) has been running a beta version of 
GPFS since April 2005. In December 2005, IBM released the first official version of 
GPFS for Blue Gene. 
 
The most common configuration for a cluster running GPFS has the disks attached via 
so-called Network Shared Disk (NSD) servers. This configuration allows operation over 
an IP networking infrastructure and has been shown to scale well. In a conventional 
cluster the compute nodes function as GPFS clients, whereas for Blue Gene the I/O nodes 
constitute the cluster and function as the clients. The compute nodes, which run only a 
lightweight kernel, use the tree network to move file I/O to and from the associated I/O 
nodes. SDSC’s single-rack Blue Gene has 128 I/O nodes, the maximum allowable. This 
I/O-rich configuration enables high I/O performance. 
 
Two specific parallel file systems are provided: bggpfs and gpfs-wan. Both are accessible 
via GPFS and use IA-64 nodes as the NSD servers. The bggpfs system is dedicated to 
Blue Gene. It has 12 NSD data servers, 2 NSD metadata servers, and 20 TB of disk. By 
contrast, gpfs-wan is shared with other supercomputers at SDSC as well as across the 
TeraGrid. The gpfs-wan system is much larger than bggpfs, with 58 data servers, 6 
metadata servers, and 220 TB of disk. In each case the servers are attached via Gigabit 
Ethernet to the I/O nodes and via Fibre Channel to the disk. Between the I/O nodes and 
the NSD servers is a Gigabit Ethernet switch with a single link to each server. These links 
limit the peak performance possible with each file system. 
 
Performance 
I/O performance of both file systems has been measured with the IOR benchmark code 
from LLNL. Figure 2 shows the results of scaling scans obtained running in coprocessor 
mode with the default node mapping. Also shown are the peak rates possible with each 
file system. The peak rate curves are the same for both file systems up to 32 processors. 
For 64 processors and higher, the peak rate using bggpfs is at a plateau of 1.5 GB/s set by 
the links to the 12 data servers. The peak rate curve using gpfs-wan increases beyond 32 
processors until it reaches a plateau of 7.25 GB/s set by the links to the 58 data servers. 
 



The steps in the peak rate curves arise when the ratio of compute nodes to I/O nodes 
increases for the default mapping. That ratio increases from 1 to 2 going from 1 processor 
to 2 processors, from 2 to 4 going from 8 processors to 16 processors, and from 4 to 8 
going from 64 processors to 128 processors. The write rate curves for both file systems 
are between 50% and 65% of the corresponding peak rate curves over the entire 
processor range except for 1024 processors with gpfs-wan. The behavior of the read rate 
curves is more complicated. 
 
For gpfs-wan the write rate reaches a maximum of just over 4.0 GB/s on 512 processors 
and then drops somewhat to 3.2 GB/s on 1024 processors. By contrast, the read rate 
reaches a maximum of 2.2 GB/s on 1024 processors after a modest drop from 256 
processors to 512 processors. For bggpfs the write and read rates are the same and 
constant at about 800 MB/s for 64 processors and above. For gpfs-wan at higher 
processor counts the write and read rates vary considerably from one IOR run. The 
reason is probably that the file system is shared with other systems. The rates shown are 
the best from several runs. By comparison, the write and read rates for bggpfs vary 
relatively little from run to run. 
 
The results discussed so far were obtained in coprocessor mode because that simplifies 
making scaling scans. Most users, however, run in virtual node mode, so additional 
results were obtained in that mode at the higher processor counts. For gpfs-wan the write 
and read rates on 512 processors and 1024 processors in virtual node mode are lower than 
those in coprocessor mode and reach final values of 3.1 GB/s for writes and 1.6 GB/s for 
reads on 2048 processors. For bggpfs the write and read rates on 512 processors and 1024 
processors in virtual node mode are essentially the same as those in coprocessor mode 
and are sustained on 2048 processors. 
 
In summary, rates of 4.0 GB/s for writes and 2.2 GB/s for reads have been achieved 
during shared use of gpfs-wan in coprocessor mode, while rates of about 75% of those 
have been achieved in virtual node mode. 
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Figure 2: Benchmark results from BG/L system at SDSC running GPFS. 
 
 

3.3 PVFS2 
 
The third option is PVFS2. PVFS2 is an open source parallel file system developed by 
researchers at Argonne, Clemson University, and Ohio State Supercomputer Center, with 
help from a broad community of developers and users. While not officially supported by 
IBM, replacement I/O node images are available to run PVFS2 on BG/L as part of the 
ZeptoOS project. PVFS2 is currently installed at Argonne and at MIT, and it has been 
tested on the BGW system at IBM Watson. 
 
The PVFS2 system uses a set of PVFS2 servers to allow PVFS2 clients to access the 
shared file system space. On BG/L, I/O nodes are PVFS2 clients. The ZeptoOS I/O node 
image provides the kernel module and user-space daemon that PVFS2 clients use to 
contact PVFS2 servers. BG/L compute nodes use the ciod system to forward I/O 
operations to I/O nodes, just as with the other file system options. BG/L login nodes also 
mount the file system, so that users can access data stored on the PVFS2 file system 
between their application runs and move data on and off the file system conveniently. 
 
The I/O nodes use a Gigabit Ethernet network to communicate with PVFS2 servers. At 
Argonne, 14 PVFS2 servers combine to provide a modest 6.7 TB file system. Servers are 
xSeries 346 nodes, each with a 3.4 GHz Xeon processor, 4 GB of RAM, and 800 GB of 
10K SCSI HDDs on a ServeRAID 6i+ controller in RAID5 mode. The built-in GigE 



connections were replaced with Intel Pro 1000/MT GigE cards in order to allow for the 
use of jumbo frames. This configuration peaks at 1.2 GB/s read and 620 MB/s writes, and 
a single process can create approximately 50 files/second. 
 
As part of the IBM BGW Consortium Day, the PVFS2 team had an opportunity to test 
PVFS2 on the BGW system. This system has a larger number of compute nodes and was 
configured with more PVFS2 servers, 33, during testing. The disk resources on these 
servers were very modest, significantly limiting overall write performance. Results from 
this testing are shown in Figure 3. 
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Figure 3: Benchmark results from BG/L system at IBM Watson running PVFS2. 
 
 

PVFS2 is the first parallel file system to be made freely available for the BG/L system. 
Installation is not trivial, but an experienced system administrator should have no 
problem. For large I/O operations, performance is quite good, and the PVFS2 team is 
actively working to improve the performance of the system overall, including both small 
I/O operations and metadata operations, such as listing directories and creating and 
removing many small files. 
 

3.4 Lustre 
 
The fourth option is to use the Lustre file system. Lustre is a scalable cluster file system 
designed, developed, and maintained by Cluster File Systems, Inc. For more about CFS 
and Lustre in general, please visit http://www.lustre.org/index.html. Lawrence Livermore 
National Laboratory’s 64K Blue Gene/L system uses Lustre as its parallel file system. 
 
LLNL Hardware Configuration 



Livermore’s 64-rack BG/L system uses an I/O configuration of 64 compute nodes for 
every I/O node (see Figure 4). BG/L has 1024 I/O nodes. Each I/O node is a Lustre client 
and is attached via Gigabit Ethernet to a system of 15 switches (the federated switch and 
BG/L and Lustre edge switches, to be described later) that connects to the 896 TB Blue 
Gene Lustre Cluster (BLC) file system via 448 Gigabit Ethernet links. BLC is a cluster of 
224 Intel dual Nocona nodes with 2 GB memory and 2.8 GHz processors. Each of these 
Nocona nodes is a Lustre “Object Storage Server” (OSS). Each OSS has 2 Gigabit 
Ethernet links coming into it and connects to a Data Direct Networks 8500 Controller via 
a single 2 Gb/s host interface. The disk storage is provided by 28 racks of Data Direct 
Networks (DDN) RAID storage. Each rack of DDN storage contains 32 TB of usable 
SATA storage accessible via eight 2 Gb/s fibre channel interfaces. 
 
The link between BG/L and storage is provided by a network of Cisco 6509 switches. 
Currently the 1024 1 Gb/s ION interfaces associated with BG/L and the storage 
purchased with it is attached to “edge switches.” The edge switches are connected to a 
cluster of six “core” switches via 10 Gb/s connections. Two other systems currently 
“share” the BLC file system by way of the federated network. The first of these is the 
Storage Lustre Interface Cluster (SLIC), a cluster of 10 Itanium Tiger 4 nodes that is used 
to transfer files out of the Lustre file system into the High Performance Storage System 
(HPSS) data archive for permanent storage. Users log into SLIC and use either parallel 
ftp or htar to move their files to HPSS. The other cluster with access to BLC is Gauss. 
Gauss is a high-performance visualization cluster of 256 dual opteron (6 GB memory per 
CPU) Infiniband interconnected nodes, using NVIDIA 4500 graphics and each with a GE 
link into the federated switch that connects it to the Blue Gene Lustre cluster file system. 
Gauss will be used exclusively by users of BG/L for data visualization. 
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Figure 4: Lustre storage network architecture at LLNL. 

 
Projected Performance 
With its 1024 1 Gb/s interfaces the BG/L system at LLNL has a potential I/O bandwidth 
of 128 GB/s. The original storage design specified an I/O bandwidth of 40 GB/s—far 
below LLNL’s normal I/O bandwidth to CPU performance ratio. Cost necessitated 
scaling back this original design goal. The adjustments began with the disk subsystems. 
At the time the disks were purchased, there was a choice between 146 GB fibre drives for 
over $1000 each or enterprise-class 250 GB SATA drives for less than $500 each. Twice 
the storage for half the cost is a compelling argument. LLNL purchased 28 racks of 
SATA storage. Each rack has a theoretical bandwidth of 1.2 GB/s for a total of 33.6 GB/s. 
The trade-off made was in terms of performance. SATA disks provide very good 
streaming performance but poor random performance. With a ratio of 65,536 (or 131,072 
in virtual node mode) clients to 448 RAID devices, the LLNL workload is random. Based 
on the disk specifications a request was expected to take 18 ms (~= 55 requests per 
second) or, given a 1 MB block size, about 55 MB/s per RAID device. The 448 RAID 
devices were therefore expected to achieve around 24.8 GB/s.  
 
The LLNL Lustre network was designed to provide 45 GB/s theoretical bandwidth 
between BG/L and its associated storage cluster. The current configuration uses six Cisco 
6509’s as BG/L edge switches (connecting the BGL core to the federated switch 
infrastructure) and three 6509’s as disk edge switches (connecting the 224 file system 
OSS nodes to the federated switch). The whole configuration is tied together with another 
six 6509’s acting as core switches. The Lustre core architecture was also designed to 



provide a connection point for the other parts of the LLNL Lustre-based “site wide global 
file system” (SWGFS). The network architecture is based on layer 3 switching and uses 
“equal cost multipathing” (ECMP) and link aggregation where appropriate. The design 
goal was to have the network deliver 80% of theoretical bandwidth, or 36 GB/s.  
 
Actual Performance 
LLNL staff first analyzed the capabilities of each I/O-related element in the path between 
the user application code and the physical disk devices independently. Then the staff 
tested groups of elements leading up to a user-level I/O benchmark (IOR) designed to 
simulate actual user behavior. The lessons learned and problems found and fixed are far 
too extensive to discuss here, but the bottom line is that, as expected, the disks have 
proven to be the limiting factor related to I/O performance. With exceptional cache 
management and carefully selected block sizes, write performance can exceed raw disk 
random I/O rates. The best full-system write performance achieved is around 26 GB/s. 
Improving read performance has proven to be a harder task, given the number of 
concurrent data streams per physical device, the amount of memory available in the I/O 
nodes for caching, and the synchronous nature of CIOD. The best read performance 
achieved is around 22 GB/s (not achieved in the run below). The results in Figure 5 were 
generated using the IOR benchmark on November 25, 2005. 
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Figure 5: Benchmark results from BG/L system at LLNL running Lustre. 
 
Summary 
An enormous amount of work has been done during the past year to make Lustre perform 
efficiently and reliably on Livermore’s BG/L system. The approach was to isolate and 
tune each component and then combine and tune again. The conglomeration of 
components involved in I/O on BG/L, from the Lustre client and server software itself, to 
the tunables of the DDN controllers and the network edge and core switches, as well as 
the buffering in the CIOD on the ION, have all been tweaked many times in the quest to 
improve performance. And there is still work to do. All performance numbers listed in 
this study were run in coprocessor mode. Performance in virtual node mode (the second 
processor is used for calculation tasks as well as communication) is substantially below 



coprocessor mode performance, principally because almost no time has yet been spent 
studying or tuning virtual node mode performance. Metadata performance is also an area 
that requires further study and improvement, as is simultaneous access to the Lustre file 
system from all systems. During 2006, LLNL will continue to study and improve 
remaining performance and reliability issues. 
 
BGL Lustre Availability 
Lustre is available for BGL style machines however it is not explicitly labeled as such on 
the Lustre website.  From Lustre's point of view the BGL nodes are simply low memory 
ppc nodes so there is no special _BGLonly_ version of the code.  LLNL is currently 
running v1.4.5.8 of the Lustre code plus perhaps a dozen locally maintained BGL specific 
patches for mostly scalability and performance issues.  Many of these patches have 
already been committed upstream to newer versions of Lustre.  However other new 
features have also been added upstream that LLNL has not yet fully tested, so we're 
sticking with a v1.4.5.8 based version. 
 
We suggest users wishing to run Lustre on BGL client IONs download version 1.4.5.8 
from the Lustre website and compile it as follows for ppc (on a ppc node).  They will of 
course also have to patch their kernel with the proper Lustre patches. 
 
> sh autogen.sh 
> ./configure --with-linux=<your-linux-source> --disable-liblustre \ 
    --disable-docs --disable-server --disable-readline --disable-tests 
> make rpms 
 
This will work well for small BGL style systems, of 1-2K nodes, beyond that scale there 
may be some issues encountered that LLNL is maintaining patches for. If more 
information or assistance with Lustre is needed please feel free to contact Kim Cupps at 
LLNL, cupps2@llnl.gov 

4 Conclusions 
 
Multiple options are available for attaching storage to BG/L systems. For systems with 
very light I/O loads, an NFS solution is probably adequate. For heavier I/O loads, a 
parallel file system is preferable. If commercial support is a concern, IBM’s GPFS is 
currently the best choice. For a free, community-supported solution, PVFS2 and Lustre 
are excellent options and can be matched with a wide variety of storage hardware.  
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